Installation du plug-in 'Mosaic' sous Gimp 2.10 Win 64

Le programme 'mosaic' écrit en langage Python et créé par Johannes Beetz (Yobeatz) permet d'obtenir des mosaïques romaines à partir d'une image dans un environnement Python. Présentation à la page :

https://towardsdatascience.com/how-to-generate-roman-style-mosaics-with-python-11d5aa021b09

Les sources de ce programme sont à la page : <u>https://github.com/yobeatz/mosaic</u>

Ce programme est très légèrement modifié pour s'adapter à Gimp. Ces modifications concernent le rendu en SVG (Scalable Vector Graphics), l'abandon de la visualisation initiale et l'interfaçage avec Gimp 2.10 Win 64. Un convertisseur SVG (rsvg-convert) est ajouté pour obtenir un format compatible Gimp 2.10.

Ce programme a besoin d'un environnement Python pour fonctionner. Le choix est fait sur l'environnement Python Anaconda , soit :

Anaconda <u>https://www.anaconda.com/products/individual</u> (téléchargement au bas de la page)

ou

MiniAnaconda https://docs.conda.io/en/latest/miniconda.html

Un plug-in en Python est créé pour Gimp 2.10. Ce plug-in est testé sous Gimp 2.10.24 Win 64 fourni par Gimp.org <u>https://www.gimp.org/downloads/</u> ou notre version portable <u>https://samjcreations.blogspot.com/</u>

Tous les tests, installations sont faits sous Windows 10 64 bits Pro où les répertoires utilisateur [USER] sont sans espace et sans lettre accentuée.

Ce plug-in détecte automatiquement les environnements Anaconda ou Miniconda installés dans le répertoire utilisateur.

Installation et fonctionnement

1 - Environnement Python

Dans un premier temps il est nécessaire d'installer un des 2 environnements Anaconda (Anaconda ou MiniAnaconda).

Se rendre sur une des pages <u>https://www.anaconda.com/products/individual</u> (Anaconda) ou <u>https://docs.conda.io/en/latest/miniconda.html</u> (MiniAnaconda) et télécharger l'environnement qui vous convient :

Python 3.8 64-Bit Graphical Installer (457 MB) pour Anaconda

Python 3.8 Miniconda3 Windows 64-bit 57.0 MiB ou Python 3.9 Miniconda3 Windows 64-bit

Lancer les installateurs et choisir d'INSTALLER DANS LE RÉPERTOIRE UTILISATEUR option J**ust Me** (recommended).

Prévoir un maximum de 6Go de libre sur votre disque pour la configuration totale.

2 – Installation des bibliothèques Python nécessaires au fonctionnement de 'mosaic'

Le programme 'mosaic' utilise 5 bibliothèques qui doivent être ajoutées à l'environnement Anaconda : numpy , Opencv , scipy , matplotlib et shapely .

Lancer le terminal 'Anaconda Prompt (anaconda3)' à partir du menu 'Démarrer' de Windows.

À partir de ce terminal lancer successivement ces 5 lignes de commandes en validant l'installation à chaque étape (Y).

conda install -c anaconda numpy conda install -c conda-forge opencv conda install -c anaconda scipy conda install -c conda-forge matplotlib conda install -c conda-forge shapely

3 – Installation, test du programme 'mosaic' et du plug-in pour Gimp

3.1 Téléchargement

À partir de ce lien <u>http://www.aljacom.com/~gimp/Mosaic_V3_Gimp-2.10_Win.7z</u> télécharger l'archive 'Mosaic_V3_Gimp-2.10_Win.7z'.

Décompresser cette archive avec 7-Zip http://www.7-zip.org/

3.2 Installation du programme 'mosaic'

De l'archive 7z décompressée, copier le sous-répertoire **Yobeatz_mosaic_Gimp_2_10** dans Anaconda pour obtenir :

C:\Users\[USER]\anaconda3\Yobeatz_mosaic_Gimp_2_10 (pour Anaconda)

ou

C:\Users\[USER]\miniconda3\Yobeatz_mosaic_Gimp_2_10 (pour Miniconda)

3.3 Installation du plug-in Gimp 'mosaic_command_line'

De l'archive 7z décompressée, copier le sous-répertoire **mosaic_command_line** dans un des sous répertoire des plug-ins de Gimp 2.10, par exemple :

```
C:\Users\[USER]\AppData\Roaming\GIMP\2.10\plug-ins version gimp.org
```

ou

```
Gimp-2.10.24-setup-3_Portable_32-64bit-Win\Preferences\plug-ins version Portable
```

Pour obtenir :

```
C:\Users\[USER]\AppData\Roaming\GIMP\2.10\plug-ins\mosaic command line
```

ou

Gimp-2.10.24-setup-3_Portable_32-64bit-Win\Preferences\plug-ins\mosaic_command_line

3.4 Test du programme 'mosaic' (optionnel)

Lancer le terminal 'Anaconda Prompt (anaconda3)' à partir du menu 'Démarrer' de Windows.

Utiliser ces lignes de commandes :

cd anaconda3\Yobeatz mosaic Gimp 2 10 (Anaconda)

ou

cd miniconda3\Yobeatz mosaic Gimp 2 10 (Miniconda)

Puis, pour obtenir une image 'mosaic_input.png' (sans transparence pour être compatible avec 'mosaic' :

```
copy GMICKY.png mosaic input.png
```

Puis, obtenir une mosaïque romaine par :

python mosaic gimp svg.py

Le résultat est une image SVG : mosaic_output.svg

Puis pour obtenir une image SVG redimensionnable, utiliser ces lignes de commandes :

rsvg-convert.exe -a -z 2 -f svg mosaic_output.svg -o test.svg

start test.svg

(si vous avez un lecteur compatible déclaré dans Windows)

Fermer le terminal 'Anaconda Prompt (anaconda3)'

3.5 Test du plugin Gimp

Ouvrir une image dans Gimp et vérifier que le calque actif soit <u>sans transparence</u>.

Activer le plug-in par :

Filtres > Mosaic command line...

Paramétrer et clic sur le bouton 'Valider'.

Selon la rapidité de l'ordinateur, la précision demandée, le temps de traitement variera de quelques dizaines de secondes à quelques minutes.

Deux fenêtres de terminal vont s'afficher pendant le traitement. Il ne faut pas les fermer afin que le traitement continue normalement.

Résultat :

4 - Les paramètres du plug-in Gimp

HALF__TILE 4...30 -> Half size of mosaic tile

GAUSS 0...8 -> Blurs image before edge detection (check "edges" image for a good value)

EDGE__DETECTION -> HED or DiBlasi EDGE_DETECTION

RAND__SIZE 0...10 -> Portion of tile size which is added or removed randomly during construction

MAX__ANGLE 30...75 -> Max construction angle for tiles along roundings

GAP_CHAIN_SPACING 0.4...1.0 -> Spacing of gap filler chains

MAKE__CONVEX -> No ou More realistic polygons -> break concave into more realistic polygons

Zoom Import SVG -> Grossissement de l'image SVG de 1 à 5 (100%, 200%...500%).

Temporisation - Delay 1s...5s -> Temporisation en secondes entre les différents traitements.

5 - Facultatif consulter la documentation Anaconda

https://docs.anaconda.com/anaconda/user-guide/getting-started/

https://docs.anaconda.com/anacondaorg/user-guide/howto/#use-packages

https://anaconda.org/anaconda/numpy

https://anaconda.org/conda-forge/opencv

https://anaconda.org/anaconda/scipy

https://anaconda.org/conda-forge/matplotlib + https://matplotlib.org/